DuraDrive™ Electric Damper Actuators
MS41-6043/MS41-6083 Series
Non-spring Return Rotary
24 Vac - Modulating Control 0 to 10 Vdc

Description
The DuraDrive direct coupled 24 Vac non-spring return rotary electric actuators are designed for modulating control of dampers.

Features
- Compact, lightweight design
- Self-adapting capability for maximum flexibility in damper positioning
- Manual override
- 5° preload as shipped from factory
- Offset and slope adjustment models available
- Independently adjustable dual auxiliary switches available
- cUL and UL listed; Ce certified

Application
These actuators are used in constant or variable air volume installations for control of HVAC dampers requiring up to 35 lb-in (4 Nm) torque or 70 lb-in (8 Nm).

Product Numbers

<table>
<thead>
<tr>
<th>Torque</th>
<th>Cabling</th>
<th>24 Vac Operating Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>35 lb-in</td>
<td>Plenum</td>
<td>MS41-6043</td>
</tr>
<tr>
<td>(4 Nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 lb-in</td>
<td>Plenum</td>
<td>MS41-6083</td>
</tr>
<tr>
<td>(8 Nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning/Caution Notations

WARNING: Personal injury or loss of life may occur if you do not follow a procedure as specified.

CAUTION: Equipment damage or loss of data may occur if you do not follow a procedure as specified.
Specifications

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Operating voltage (G–G0)</th>
<th>24 Vac +20%, −15%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>Power consumption</td>
<td>Running: 3.3 VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holding: 1.2 VA</td>
</tr>
<tr>
<td>Control Signal</td>
<td>Input signal (Y-G0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage-input</td>
<td>0 to 10 Vdc</td>
</tr>
<tr>
<td></td>
<td>Input resistance</td>
<td>100K ohms</td>
</tr>
<tr>
<td>Feedback Signal</td>
<td>Position output signal (U–G0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage-output</td>
<td>0 to 10 Vdc</td>
</tr>
<tr>
<td></td>
<td>Maximum output current</td>
<td>DC 1 mA</td>
</tr>
<tr>
<td>Equipment Rating</td>
<td>Rating</td>
<td>Class 2 according to UL, cUL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class III per EN60730</td>
</tr>
<tr>
<td>Auxiliary Features</td>
<td>Control signal adjustment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offset (start point)</td>
<td>Between 0 and 5 Vdc</td>
</tr>
<tr>
<td></td>
<td>Slope (span)</td>
<td>Between 2 and 30 Vdc</td>
</tr>
<tr>
<td></td>
<td>Dual auxiliary switch contact rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC rating</td>
<td>24 Vac</td>
</tr>
<tr>
<td></td>
<td>DC rating</td>
<td>4A resistive, 2A inductive</td>
</tr>
<tr>
<td></td>
<td>Switch Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch A</td>
<td>0° to 90° with 5° intervals</td>
</tr>
<tr>
<td></td>
<td>Recommended range usage</td>
<td>0° to 45°</td>
</tr>
<tr>
<td></td>
<td>Factory setting</td>
<td>5°</td>
</tr>
<tr>
<td></td>
<td>Switch B</td>
<td>0° to 90° with 5° intervals</td>
</tr>
<tr>
<td></td>
<td>Recommended range usage</td>
<td>45° to 90°</td>
</tr>
<tr>
<td></td>
<td>Factory setting</td>
<td>85°</td>
</tr>
<tr>
<td></td>
<td>Switching hysteresis</td>
<td>2°</td>
</tr>
<tr>
<td>Function</td>
<td>Torque</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS41-6043 Series</td>
<td>35 lb-in (4 Nm)</td>
</tr>
<tr>
<td></td>
<td>MS41-6083 Series</td>
<td>70 lb-in (8 Nm)</td>
</tr>
<tr>
<td></td>
<td>Runtime for 90° opening or closing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS41-6043 Series</td>
<td>90 seconds, at 60 Hz (108 seconds at 50 Hz)</td>
</tr>
<tr>
<td></td>
<td>MS41-6083</td>
<td>125 seconds at 60 Hz (150 seconds at 50 Hz)</td>
</tr>
<tr>
<td></td>
<td>Nominal angle of rotation</td>
<td>90°</td>
</tr>
<tr>
<td></td>
<td>Maximum angular rotation</td>
<td>95°</td>
</tr>
<tr>
<td>Mounting</td>
<td>Shaft size: Minimum shaft length 3/4-inch (20 mm)</td>
<td></td>
</tr>
</tbody>
</table>

![Acceptable Shaft Sizes](1/4 to 1 inch 6 - 12.7 mm, 3/8 to 5/8 inch 8 -16 mm, 9/16 inch 15 mm)

Function

- **Torque**
 - MS41-6043 Series: 35 lb-in (4 Nm)
 - MS41-6083 Series: 70 lb-in (8 Nm)
- **Runtime for 90° opening or closing**
 - MS41-6043 Series: 90 seconds, at 60 Hz (108 seconds at 50 Hz)
 - MS41-6083: 125 seconds at 60 Hz (150 seconds at 50 Hz)
- **Nominal angle of rotation**: 90°
- **Maximum angular rotation**: 95°

Housing

- **Enclosure**: NEMA Type 2
- **Material**: Durable plastic
- **Gear lubrication**: Silicone-free
Specifications, Continued

Ambient Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
</table>
| Ambient temperature | Operation: –25°F to 130°F (–32°C to 55°C)
| | Storage and transport: –40°F to 158°F (–40°C to 70°C) |
| Voltage Requirements for 6083 Series at High Temperatures: | Minimum Voltage: 24 Vac +20%, -10%
| | 90°F to 130°F (32°C to 55°C) |
| Ambient humidity (non-condensing) | 95% rh |

Agency Certification

- UL 873
- cUL certified to Canadian Standard C22.2 No. 24-93

CE Conformity

- Electromagnetic Compatibility (EMC)
- Emissions standards: EN 50081-1
- Immunity standards: EN 50082-2

Miscellaneous

- Pre-cabled connection: 18 AWG
- Cable length: 3 feet (0.9 m)
- Life cycle: Five-year warranty
- Dimensions: See Figure 13
- Weight: 1.06 lbs (0.48 kg)

Actuator Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Base plate</td>
</tr>
<tr>
<td>2</td>
<td>Positioning scale for angle of rotation</td>
</tr>
<tr>
<td>3</td>
<td>Slope adjustment</td>
</tr>
<tr>
<td>4</td>
<td>Offset (start point) adjustment</td>
</tr>
<tr>
<td>5</td>
<td>DIP switches</td>
</tr>
<tr>
<td>6</td>
<td>Cover for DIP switches</td>
</tr>
<tr>
<td>7</td>
<td>Connection cables</td>
</tr>
<tr>
<td>8</td>
<td>Connection cables</td>
</tr>
<tr>
<td>9</td>
<td>Manual override</td>
</tr>
<tr>
<td>10</td>
<td>Coupling bushing</td>
</tr>
<tr>
<td>11</td>
<td>1/2-inch guide</td>
</tr>
<tr>
<td>12</td>
<td>Auxiliary switch A</td>
</tr>
<tr>
<td>13</td>
<td>Auxiliary switch B</td>
</tr>
<tr>
<td>14</td>
<td>Position indicator</td>
</tr>
<tr>
<td>15</td>
<td>Adjustment lever with locking screw (3 mm hex)</td>
</tr>
<tr>
<td>16</td>
<td>Set screw for mechanical range stop (3 mm hex)</td>
</tr>
<tr>
<td>17</td>
<td>Anti-rotation bracket</td>
</tr>
</tbody>
</table>

Figure 2. Parts of the Actuator.

Legend

- 1. Base plate
- 2. Positioning scale for angle of rotation
- 3. Slope adjustment
- 4. Offset (start point) adjustment
- 5. DIP switches
- 6. Cover for DIP switches
- 7. Connection cables
- 8. Connection cables
- 10. Coupling bushing
- 11. 1/2-inch guide
- 12. Auxiliary switch A
- 13. Auxiliary switch B
- 14. Position indicator
- 15. Adjustment lever with locking screw (3 mm hex)
- 16. Set screw for mechanical range stop (3 mm hex)
- 17. Anti-rotation bracket
Operation

A continuous 0 to 10 Vdc signal from a controller to wire 8 (Y) operates the damper actuator. The angle of rotation is proportional to the control signal. A 0 to 10 Vdc position feedback output signal is available between wire 9 (U) and wire 2 (G0) to monitor the position of the damper motor.

In the event of a power failure, the actuator holds its position. In the event that only the control signal is lost, the actuator returns to the “0” position.

Life expectancy

An improperly tuned loop will cause excessive repositioning that will shorten the life of the actuator.

Control signal adjustment

MS41-6043-520/MS41-6083-520 and MS41-6043-522/MS41-6083-522: For sequencing and the electronic limitation of the angle of rotation.

Use the Uo potentiometer to set the offset (start point) between 0 to 5 Vdc. Use the ∆U potentiometer to set the slope (span) between 2 to 30 Vdc.

NOTE: The Y input is limited to a maximum of 10 Vdc. If the sum of the offset and slope setting is greater than 10V, the angle of rotation is reduced providing the feature of electronic limitation of the angle of rotation.

![Diagram of Actuator Position](image)

Figure 3.

- Ys: Actuator position (100% = angle of rotation 90°*)
- Y: Control input signal
- Uo: Offset (start point)
- ∆U: Slope
- ∆Uw: Active voltage range (Ys changes)

When the mechanical limitation of the angle of rotation and self-adapt function are ON, 100% does not equal 90°.

Table 2.

<table>
<thead>
<tr>
<th>Examples in Figure 3</th>
<th>Uo Offset</th>
<th>∆U Slope</th>
<th>Active Voltage Range</th>
<th>Ys Actuator Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimum slope</td>
<td>0 Vdc</td>
<td>2 Vdc</td>
<td>0 to 2 Vdc</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>2. Limitation of rotation</td>
<td>5 Vdc</td>
<td>30 Vdc</td>
<td>5 to 10 Vdc</td>
<td>0 to 16.7%</td>
</tr>
<tr>
<td>3. Limitation of rotation</td>
<td>0 Vdc</td>
<td>30 Vdc</td>
<td>0 to 10 Vdc</td>
<td>0 to 33.3%</td>
</tr>
<tr>
<td>4. Setting shown in Figure 4</td>
<td>0 Vdc</td>
<td>10 Vdc</td>
<td>0 to 10 Vdc</td>
<td>0 to 100%</td>
</tr>
</tbody>
</table>
Determine the setting needed to electronically limit the angle of rotation between 0 to 50% (0 to 45°) using a 2 to 10 Vdc input.

Calculating the value of ΔU:

$$\Delta U = \frac{100/\%}{\text{working angle of rotation Y_s [\%]}} \times (10[Vdc] - U_o[Vdc]) = \frac{100\%}{50\%} \times (10Vdc - 2Vdc) = 16Vdc$$

Settings: $U_o = 2$ Vdc; $\Delta U = 16$ Vdc

Electronic limitation angle of rotation $Y_s = 50\%$ (45°)
Slope $\Delta U = 16V$
Active voltage range $\Delta U_w = 2$ to 10 Vdc

Figure 5. Example.

Dual Auxiliary Switch

MS41-6043-502
MS41-6043-522
MS41-6083-502
MS41-6083-522

Figure 6 shows the adjustable switching values for the auxiliary switches A and B.

Actuator Scale:
- clockwise
- counterclockwise

Adjustment range for Switches A and B
- Setting interval: 5°
- Switching hysteresis: 2°

NOTES:

- The auxiliary switch setting shafts rotate with the actuator. The scale is valid only when the actuator is in the “0” position on clockwise motion.

- For the counterclockwise rotation, the adjustment lever has to move from 90° to 0° by using the manual override and then adjust the auxiliary switches. After the auxiliary switches are adjusted, the adjustment lever has to move back to the 90° position.

- Use the long arm of the X to point to the position of switch A. Use the narrower tab on the red ring to point to the position of switch B.
Dual in-line package (DIP) switches

Raise the protective cover from left to right to locate the DIP switches. See Figure 2 for the location of the cover.

The factory setting is 0 (OFF).

When mechanical angle of rotation is limited, the self-adapt switch may be turned ON so that the limited range will become the new 0 to 100% for the actuator logic. In this case, 0 to 100% is not equal to 90°.

CAUTION:

When turning the self-adaptive feature on or after a software reset with the feature on, the actuator will enter a five-minute calibration cycle as the actuator adjusts to the rotation limits of the system. A software reset happens after power on or may be caused by electrostatic discharge (ESD) at levels of 2kV and above.

The position output signal U is not influenced by the self-adapt function. The 0 to 10V feedback signal U is always proportional to 0 to 90° (or 90 to 0°).

The factory setting is clockwise.

The direction of rotation switch should match the damper rotation movement.

The factory setting is direct acting.

As the clockwise angle of rotation increases, the output voltage increases.

If the direction of rotation is counterclockwise, the output signal switch should be set at reverse acting to match the direction of the rotation switch.
Sizing

The type of actuator required depends on several factors.

1. Obtain damper torque ratings (ft-lb/ft² or Nm/m²) from the damper manufacturer.
2. Determine the area of the damper.
3. Calculate the total torque required to move the damper:
 \[\text{Total Torque} = \frac{\text{Torque Rating} \times \text{Damper Area}}{\text{SF}^1} \]

Safety Factor: When determining the torque of an actuator required, a safety factor should be included for unaccountable variables such as slight misalignments, aging of the damper, etc. A suggested safety factor is 0.80 (or 80% of the rated torque).

4. Select the actuator type from Table 3.

Table 3.

<table>
<thead>
<tr>
<th>Total Torque</th>
<th>Actuator</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 lb-in (4 Nm)</td>
<td>MS41-6043 Series</td>
</tr>
<tr>
<td>70 lb-in (8 Nm)</td>
<td>MS41-6083 Series</td>
</tr>
</tbody>
</table>

Mounting and Installation

Place the actuator on the damper shaft so that the front of the actuator is accessible. The label is on the front side. An anti-rotation bracket is included with the actuator.

The minimum damper drive shaft length is 3/4-inch (20 mm).

Observe the service envelope around the actuator as shown in Figure 13.

For detailed mounting instructions, see Installation Instructions F-27211.

NOTE: For all damper shafts with the exception of the 1/2-inch round shaft: Remove 1/2-inch diameter guide before installation.

Figure 10. Damper Shaft Sizes.
Manual override

To move the damper blades and lock the position with no power present:

1. Slide the red manual override knob toward the back of the actuator.

2. Make adjustments to the damper position.

3. Slide the red manual override knob toward the front of the actuator.

Once power is restored, the actuator returns to automated control.

Mechanical range adjustment

To mechanically limit the range of the damper blade.

1. Loosen the stop set screw.

2. Move the screw along the track to the desired position, and fasten it in place.

Example:

Stop set screw at 70°
Self-adapt switch ON
Input signal Y = 5 Vdc

The damper will be at 35° (50% of the adjusted range.)

NOTE: On versions with the slope and offset features, this example assumes
Offset Uo = 0 Vdc
Slope ∆U = 10 Vdc
Wiring

All wiring must conform to NEC and local codes and regulations.

Use earth ground isolating step-down Class 2 transformers. Do not use autotransformers.

The sum of the VA ratings of all actuators and all other components powered by one transformer must not exceed the rating of the transformer.

It is recommended that one transformer power no more than ten actuators.

WARNING:

All six outputs of the dual auxiliary switch (A and B) must only be connected to:
- Class 2 voltage (UL/C-UL).
- Separated Extra-Low Voltage (SELV) or Protective Extra Low Voltage (PELV) (according to HD384-4-41) for installations requiring conformance.

WARNING:

Installations requiring Conformance:

- All wiring for CE certified actuators must only be separated extra low voltage (SELV) or protective extra low voltage (PELV) per HD384-4-41.
- Use safety isolating transformers (Class III transformer) per EN61558. They must be rated for 100% duty cycle.
- Overcurrent protection for supply lines is maximum 10A.

Wiring Designations

Each wire has the standard symbol printed on it.

24 Vac power supply

0 to 10V modulating control

<table>
<thead>
<tr>
<th>Standard Symbol</th>
<th>Function</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supply (SP)</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>Neutral (SN)</td>
<td>Black</td>
</tr>
<tr>
<td>8</td>
<td>0 to 10V input signal</td>
<td>Gray</td>
</tr>
<tr>
<td>9</td>
<td>Output for 0 to 10 Vdc position indication</td>
<td>Pink</td>
</tr>
</tbody>
</table>

Factory-installed options

S1	Switch A Common
S2	Switch A N.C.
S3	Switch A N.O.
S4	Switch B Common
S5	Switch B N.C.
S6	Switch B N.O.
Start-Up/Commissioning

Check that the wires are connected correctly.

Check that offset and slope are set correctly, if used.

Check that the direction of rotation switch matches the rotation of the damper shaft.

Connect wires 1 (red) and 2 (black) to a Digital Multimeter (DMM) with the dial set at AC V to verify that the operating voltage is within range.

1. Check operation:
 a. Connect wires 1 (red) and 2 (black) to the actuator.
 b. Set the DMM dial to Vdc.
 c. Connect wires 2 (black) and 8 (gray) to the DMM.
 d. Apply a full-scale input signal (10 Vdc) to wire 8 (gray).
 e. Allow the actuator shaft coupling to rotate from 0° to 90°.
 f. Disconnect wire 8 (gray) and the shaft coupling returns to the “0” position.

2. Check Feedback:
 a. Set the DMM dial to Vdc.
 b. Attach wires 2 (black) and 9 (pink) to the DMM.
 c. Apply a full scale input signal to wire 8 (gray).
 The reading at the DMM should increase.
 d. Remove the signal from wire 8 (gray).
 The reading at the DMM should decrease and the actuator shaft coupling returns to the “0” position.

3. Check Auxiliary Switch A:
 a. Set the DMM dial to ohms (resistance) or continuity check.
 b. Connect wires S1 and S3 to the DMM.
 The DMM should indicate open circuit or no resistance.
 c. Apply a full scale input signal to wire 8 (gray).
 The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch A.
 d. Connect wires S1 and S2 to the DMM. The DMM should indicate open circuit or no resistance.
 e. Stop the signal to wire 8 (gray).
 The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch A.
4. Check Auxiliary Switch B:
 a. Set the DMM dial to ohms (resistance) or continuity check.
 b. Connect wires S4 and S6 to the DMM. The DMM should indicate open circuit or no resistance.
 c. Apply a full scale input signal to wire 8 (gray). The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch B.
 d. Connect wires S4 and S5 to the DMM. The DMM should indicate open circuit or no resistance.
 e. Stop the signal to wire 8 (gray). The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch B.

Service

WARNING:

Do not open the actuator.
If the actuator is inoperative, replace the unit.

Dimensions

![Figure 13. Dimensions of the DuraDrive Actuator and Anti-rotation Bracket.](image-url)